Hormigón o Concreto, material artificial utilizado en ingeniería que se obtiene mezclando cemento Portland, agua, algunos materiales bastos como la grava y otros refinados, y una pequeña cantidad de aire.
El hormigón es casi el único material de construcción que llega en bruto a la obra. Esta característica hace que sea muy útil en construcción, ya que puede moldearse de muchas formas. Presenta una amplia variedad de texturas y colores y se utiliza para construir muchos tipos de estructuras, como autopistas, calles, puentes, túneles, presas, grandes edificios, pistas de aterrizaje, sistemas de riego y canalización, rompeolas, embarcaderos y muelles, aceras, silos o bodegas, factorías, casas e incluso barcos.
Otras características favorables del hormigón son su resistencia, su bajo costo y su larga duración. Si se mezcla con los materiales adecuados, el hormigón puede soportar fuerzas de compresión elevadas. Su resistencia longitudinal es baja, pero reforzándolo con acero y a través de un diseño adecuado se puede hacer que la estructura sea tan resistente a las fuerzas longitudinales como a la compresión. Su larga duración se evidencia en la conservación de columnas construidas por los egipcios hace más de 3.600 años.
2. COMPOSICION DEL CONCRETO
Los componentes principales del hormigón son pasta de cemento Portland, agua y aire, que puede entrar de forma natural y dejar unas pequeñas cavidades o se puede introducir artificialmente en forma de burbujas. Los materiales inertes pueden dividirse en dos grupos: materiales finos, como puede ser la arena, y materiales bastos, como grava, piedras o escoria. En general, se llaman materiales finos si sus partículas son menores que 6,4 mm y bastos si son mayores, pero según el grosor de la estructura que se va a construir el tamaño de los materiales bastos varía mucho. En la construcción de elementos de pequeño grosor se utilizan materiales con partículas pequeñas, de 6,4 mm. En la construcción de presas se utilizan piedras de 15 cm de diámetro o más. El tamaño de los materiales bastos no debe exceder la quinta parte de la dimensión más pequeña de la pieza de hormigón que se vaya a construir.
Al mezclar el cemento Portland con agua, los compuestos del cemento reaccionan y forman una pasta aglutinadora. Si la mezcla está bien hecha, cada partícula de arena y cada trozo de grava queda envuelta por la pasta y todos los huecos que existan entre ellas quedarán rellenos. Cuando la pasta se seca y se endurece, todos estos materiales quedan ligados formando una masa sólida.
En condiciones normales el hormigón se fortalece con el paso del tiempo. La reacción química entre el cemento y el agua que produce el endurecimiento de la pasta y la compactación de los materiales que se introducen en ella requiere tiempo. Esta reacción es rápida al principio pero después es mucho más lenta. Si hay humedad, el hormigón sigue endureciéndose durante años. Por ejemplo, la resistencia del hormigón vertido es de 70.307 g/cm2 al día siguiente, 316.382 g/cm2 una semana después, 421.842 g/cm2 al mes siguiente y 597.610 g/cm2 pasados cinco años.
Las mezclas de hormigón se especifican en forma de relación entre los volúmenes de cemento, arena y piedra utilizados. Por ejemplo, una mezcla 1:2:3 consiste en una parte por volumen de cemento, dos partes de arena y tres partes de agregados sólidos. Según su aplicación, se alteran estas proporciones para conseguir cambios específicos en sus propiedades, sobre todo en cuanto a resistencia y duración. Estas relaciones varían de 1:2:3 a 1:2:4 y 1:3:5. La cantidad de agua que se añade a estas mezclas es de 1 a 1,5 veces el volumen de cemento. Para obtener hormigón de alta resistencia el contenido de agua debe ser bajo, sólo el suficiente para humedecer toda la mezcla. En general, cuanta más agua se añada a la mezcla, más fácil será trabajarla, pero más débil será el hormigón cuando se endurezca.
El hormigón puede hacerse absolutamente hermético y utilizarse para contener agua y para resistir la entrada de la misma. Por otra parte, para construir bases filtrantes, se puede hacer poroso y muy permeable. También puede presentar una superficie lisa y pulida tan suave como el cristal. Si se utilizan agregados pesados, como trozos de acero, se obtienen mezclas densas de 4.000 kg/m3. También se puede fabricar hormigón de sólo 481 kg/m3 utilizando agregados ligeros especiales y espumas. Estos hormigones ligeros flotan en el agua, se pueden serrar en trozos o clavar en otras superficies.
Para pequeños trabajos o reparaciones, puede mezclarse a mano, pero sólo las máquinas mezcladoras garantizan una mezcla uniforme. La proporción recomendada para la mayoría de usos a pequeña escala —como suelos, aceras, calzadas, patios y piscinas— es la mezcla 1:2:3.
Cuando la superficie del hormigón se ha endurecido requiere un tratamiento especial, ya sea salpicándola o cubriéndola con agua o con materiales que retengan la humedad, capas impermeables, capas plásticas, arpillera húmeda o arena. También hay pulverizadores especiales. Cuanto más tiempo se mantenga húmedo el hormigón, será más fuerte y durará más. En época de calor debe mantenerse húmedo por lo menos tres días, y en época de frío no se debe dejar congelar durante la fase inicial de endurecimiento. Para ello se cubre con una lona alquitranada o con otros productos que ayudan a mantener el calor generado por las reacciones químicas que se producen en su interior y provocan su endurecimiento.
3. PROCESO DE FABRICACIÓN DEL CEMENTO
Los cementos portland son cementos hidráulicos compuestos principalmente de silicatos de calcio. Los cementos hidráulicos fraguan y endurecen al reaccionar químicamente con el agua. Durante esta reacción, llamada hidratación, el cemento se combina con agua para formar una pasta endurecida de aspecto similar a una roca.
Los componentes básicos para la fabricación del cemento portland son el óxido de calcio, óxido de sílice, alúmina y el óxido de hierro.
La materia prima necesaria para tener las cantidades correctas de los componentes básicos es una mezcla de materiales calcáreos (piedra caliza) y arcillosos.
3.1 EXPLOTACIÓN DE CANTERAS Y TRITURACIÓN
El primer paso, entonces, para la fabricación del cemento portland es buscar depósitos de roca para asegure tengan las características necesarias para obtener un cemento de calidad.
La cal es el componente que se encuentra en mayor cantidad en el clínker del cemento Pórtland y su origen se debe a la descomposición del carbonato de calcio por medio del calor.Como se dijo anteriormente, se usa una variedad de elementos como materia prima, los cuales se pueden clasificar según su contenido de carbonatos de calcio de la siguiente manera:
Calizas: Portadoras en abundancia de carbonato de calcio (75 - 100%)
Margas: Su contenido de carbonato de calcio es de 40 - 75% y van acompañadas de sílice y productos arcillosos.
Arcillas: Principalmente contienen sílice combinada con alúmina y otros componentes como óxidos de hierro, sodio y potasio
Generalmente los materiales crudos enunciados no cumplen por completo los requerimientos químicos del cemento portland, por este motivo se utilizan los denominados "correctores" que proporcionan los elementos minoritarios faltantes.
Nuestras canteras suelen requerir un "corrector" de hierro, tal como la hematita o la magnetita.
En ambos casos se lleva el material a un horno, el cual es un largo cilindro de acero revestido interiormente con ladrillos refractarios, y que gira alrededor de su eje longitudinal, con una pequeña pendiente descendente.
La velocidad de rotación varía de 0 a 150 revoluciones por hora, y a través de ese movimiento el material sigue sus reacciones químicas para formar los compuestos del clínker.
En el horno se distinguen las siguientes etapas, las cuales son: secado, calcinación, clínkerización y enfriamiento.
El secado:Se da en el material proveniente del método de vía húmeda.
Calcinación:En esta zona de calcinación los carbonatos de calcio y de magnesio se disocian en óxido de calcio y magnesio respectivamente.
Clínkerización:En la etapa de clínkerización es donde se producen las reacciones químicas más complejas del proceso, transformándose la materia prima en un nuevo material llamado clínker, que tiene la forma de pelotillas verde-grisáceas de unos 12 mm de diámetro.
3.3 MOLIENDA
4. DETERMINACION DE LA CALIDAD DEL CONCRETO
Las mezclas deben tener la consistencia que se requiere según los medios que se tengan para transportar y colocar el concreto en la obra. Para concretos que se transportan en cubetas y carretillas que se apisonaran con varillas, se requiere de una consistencia relativamente suave y plástica, La fluidez se consigue con el agua, pero la pastosidad la da la cantidad de finos (cemento y arena en la mezcla). Pueden lograrse mezclas relativamente secas (con poco agua) que sean plásticas y manejables; también pueden obtenerse mezclas muy fluidas (liquidas) que sean como un caldo de piedra, muy difícil de trabajar y compactar y de baja resistencia. Por lo tanto debe observarse si la producción de arena sobre agregado total es adecuada para dar una mezcla balanceada. Para determinar si la mezcla es adecuada y la calidad de agua suficiente, puede hacerse las siguientes pruebas: Alisar con el revés de una pala, una parte de la mezcla recién descargada de la mezcladora, o recién mezclada a mano y observar: . Si queda expuesta mucha grava o piedrin, faltan finos y posiblemente agua. Habrá que subir la proporción de arena y repetir la prueba. . Si queda un amasa pastosa y muy pegajosa donde no se dibuja ni distingue la grava o piedrin, la mezcla es muy arenosa. Valdrá la pena bajarle un poco de la arena a la mezcla. Si resulta una superficie lisa y poco pegajosa en la que se delinee la grava o el piedrin (pero sin quedar suelto) significa que la cantidad de finos y la de agua es la adecuada. Otro método es hacer una bola con un poco de mezcla. Si no se puede hacer es porque le falta arena o agua. Si al hacer la bola se escurre entre los dedos es que le sobra agua. . Al dejarla caer desde una altura de un metro, esta se debe de deformar pero no se debe desbaratar. Si esto ocurre la mezcla no es adecuada, le falta agua
4.2 PRUEBAS DE RESISTENCIA
La resistencia a la compresión se puede definir como la máxima resistencia medida de un espécimen de concreto o de mortero a carga axial. Generalmente se expresa en kilogramos por centímetro cuadrado (Kg/cm2) a una edad de 28 días se le designe con el símbolo f’ c. Para de terminar la resistencia a la compresión, se realizan pruebas especimenes de mortero o de concreto; a menos de que se especifique de otra manera, los ensayes a compresión de mortero se realizan sobre cubos de 5 cm. en tanto que los ensayes a compresión del concreto se efectúan sobre cilindros que miden 15 cm de diámetro y 30 cm de altura. La resistencia del concreto a la compresión es una propiedad física fundamental, y es frecuentemente empleada el los cálculos para diseño de puente, de edificios y otras estructuras. El concreto de uso generalizado tiene una resistencia a la compresión entre 210 y 350 kg/cm cuadrado. un concreto de alta resistencia tiene una resistencia a la compresión de cuando menos 420 kg/cm cuadrado. resistencia de 1,400 kg/cm cuadrado se ha llegado a utilizar en aplicaciones de construcción . La resistencia a la flexión del concreto se utiliza generalmente al diseñar pavimentos y otras losas sobre el terreno. La resistencia a la compresión se puede utilizar como índice de la resistencia a la flexión, una ves que entre ellas se ha establecido la relación empírica para los materiales y el tamaño del elemento en cuestión. La resistencia a la flexión, también llamada modulo de ruptura, para un concreto de peso normal se aproxima a menudo de1.99 a 2.65 veces el valor de la raíz cuadrada de la resistencia a la compresión.
El valor de la resistencia a la tensión del concreto es aproximadamente de 8% a 12% de su resistencia a compresión y a menudo se estima como 1.33 a 1.99 veces la raíz cuadrada de la resistencia a compresión. La resistencia a la torsión para el concreto esta relacionada con el modulo de ruptura y con las dimensiones del elemento de concreto. La resistencia al cortante del concreto puede variar desde el 35% al 80% de la resistencia a compresión. La correlación existe entre la resistencia a la compresión y resistencia a flexión, tensión, torsión, y cortante, de acuerdo a los componentes del concreto y al medio ambiente en que se encuentre. El modulo de elasticidad, denotando por medio del símbolo E, se puedes definir como la relación del esfuerzo normal la deformación correspondiente para esfuerzos de tensión o de compresión por debajo del limite de proporcionalidad de un material. Para concretos de peso normal, E fluctúa entre 140,600 y 422,000 kg/cm cuadrado, y se puede aproximar como 15,100 veces el valor de la raíz cuadrada de la resistencia a compresión. Los principales factores que afectan a la resistencia son la relación Agua – Cemento y la edad, o el grado a que haya progresado la hidratación. Estos factores también afectan a la resistencia a flexión y a tensión, así como a la adherencia del concreto con el acero. Las relaciones Edad – Resistencia a compresión. Cuando se requiera de valores mas precisos para el concreto se deberán desarrollar curvas para los materiales específicos y para las proporciones de mezclado que se utilicen en el trabajo. Para una trabajabilidad y una cantidad de cemento dadas, el concreto con aire incluido necesita menos agua de mezclado que el concreto sin aire incluido. La menor relación Agua – Cemento que es posible lograr en un concreto con aire incluido tiende a compensar las resistencias mínimas inferiores del concreto con aire incluido, particularmente en mezclas con contenidos de cemento pobres e intermedios.
El hormigón se moldea de muchas maneras. Para construir los cimientos de pequeños edificios se vierte directamente en zanjas cavadas en la tierra. Para otros tipos de cimientos y algunos muros, se vierte entre los soportes o encofrados de madera o de hierro, que se eliminan cuando el hormigón se ha secado. En la construcción con losas prefabricadas, las planchas que forman techos y suelos se montan en el suelo y después se elevan con gatos hidráulicos y se fijan las columnas a la altura precisa. Los encofrados deslizantes se utilizan para formar columnas y los núcleos de los edificios. Se van moviendo hacia arriba de 15 a 38 cm por hora mientras se vierte el hormigón y se colocan los refuerzos. El método de fraguar hacia arriba se suele utilizar en la construcción de edificios de una o dos plantas. Las paredes se fraguan en tierra o en la planta correspondiente y se sitúan con grúas. Después se fijan las paredes por sus extremos o entre ellas a unas columnas de hormigón. Para pavimentar carreteras con hormigón se utiliza una máquina pavimentadora de cimbra móvil. Esta máquina arrastra una estructura con dos guías metálicas separadas. Se vierte una capa de hormigón entre las dos guías y la máquina va avanzando lentamente. Las guías de los laterales mantienen el hormigón en su sitio hasta que éste se seca. Estas pavimentadoras pueden forjar una capa continua de pavimento de hormigón de uno o dos carriles.
En ciertas aplicaciones, como la construcción de piscinas, canales y superficies curvas, el hormigón puede aplicarse por inyección. Con este método el hormigón se pulveriza a presión con máquinas neumáticas sin necesidad de utilizar encofrados. Así se elimina todo el trabajo de los moldes de hierro y madera y se puede aplicar hormigón en lugares donde los métodos convencionales serían difíciles o imposibles de emplear.
El hormigón con aire ocluido es hormigón en el que se introducen pequeñas burbujas de aire en la mezcla con el cemento, durante su fabricación, preparación o en la fase de mezclado con la arena y los agregados. La presencia de estas burbujas aporta propiedades favorables al hormigón, tanto cuando está fresco como cuando se ha endurecido. Cuando está fresco y recién mezclado las burbujas de aire actúan como lubricante; hacen la mezcla más manejable por lo que reducen la cantidad de agua necesaria para hacerla. Este sistema de aire también reduce la cantidad de arena necesaria.
El aire presente en el hormigón endurecido reduce radicalmente los ajustes que derivan de la utilización de productos químicos anticongelantes en calles y carreteras. También previene los daños que producen en los pavimentos las heladas y deshielos. Las burbujas de aire funcionan como diminutas válvulas de seguridad que proporcionan espacio al agua para expandirse si la temperatura baja y se hiela.
-http://www.arqhys.com/contenidos/concreto-ensayos.html
-http://html.rincondelvago.com/cemento_proceso-de-fabricacion.html
-Biblioteca de Consulta Ms Encarta 2003